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Why Parallelisation is Important

International Technology Roadmap for Semiconductors 2011
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How to best make use of parallel computing power?

Dirk Sudholt Theory of Parallel Evolutionary Algorithms 3 / 65



Introduction Independent Runs Royal Road Parallel Times Combinatorial Optimisation Adaptive Schemes Outlook & Conclusions

Evolutionary Algorithms

Mutation/Recombination

Fitness evaluation

Selection by Fitness

Parallelization

low-level parallelization: parallelize execution of EA

high-level parallelization: parallelize evolution → different EA
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Island Models

λ islands,
migration every τ generations.

Advantages

Multiple communicating
populations speed up optimization

Small populations can be executed
faster than large populations

Periodic communication only
requires small bandwidth

Better solution quality through
better exploration

Challenge

Little understanding of how fundamental
parameters affect performance.
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Runtime Analysis of Parallel EAs

How long does a parallel EA need to optimise a given problem?

Goals

Understanding effects of parallelisation

How the runtime scales with the problem size n

When and why are parallel EAs “better” than standard EAs?

Better answers to design questions

How to use parallelisation most effectively?

Challenge: Analyze interacting complex dynamic systems.

Skolicki’s two-level view [Skolicki 2000]

intra-island dynamics: evolution within islands

inter-island dynamics: evolution between islands
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Content

What this tutorial is about

Runtime analysis of parallel EAs

Insight into their working principles

Impact of parameters and design choices on performance

Consider parallel versions of simple EAs

Overview of interesting results (bibliography at end)

Teach basic methods and proof ideas

What this tutorial is not about

Continuous optimisation (e. g. [Fabien and Olivier Teytaud, PPSN ’10])

Parallel implementations not changing the algorithm

No intent to be exhaustive
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(1+1) EA: a Bare-Bones EA

Study effect of parallelisation while keeping EAs simple.

(1+1) EA

Start with uniform random solution x∗ and repeat:

Create x by flipping each bit in x∗ independently with prob. 1/n.

Replace x∗ by x if f (x) ≥ f (x∗).

Offspring populations: (1+λ) EA creates λ offspring in parallel.

Parallel (1+1) EA: island model running λ communicating (1+1) EAs.
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Runtime in Parallel EAs

Notions of time for parallel EAs

T par = parallel runtime

= number of generations till solution found

T seq = sequential time, total effort

= number of function evaluations till solution found

“solution found”: global optimum found/approximation/you name it

If every generation evaluates a fixed number λ of search points,

T seq = λ · T par

and we only need to estimate one quantity.
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A Cautionary Tale

Claim: the more the merrier

“Using more parallel resources can only decrease the parallel time.”

Two examples by [Jansen, De Jong, Wegener, 2005]:

SufSamp

main path local op-
tima

global optima

(1+λ) EA outperforms (1+1) EA

SufSamp’

main path
global
optima

local optima

(1+1) EA outperforms (1+λ) EA
disproves the claim!

Parallelisation changes EAs’ dynamic behaviour.

Effects on performance can be unforeseen and depend on the problem.
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Independent Runs

Consider λ identical algorithms, each solving a problem with probability p.

Theorem

The probability that at least one run solves the problem is 1− (1− p)λ.
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λ independent (1+1) EAs on TwoMax

TwoMax

TwoMax(x) := max
{∑n

i=1 xi ,
∑n

i=1(1− xi )
}

+
∏n

i=1 xi

0 5 10 15 20

10

12

14

16

18

20

22

number of ones

Success probability for single (1+1) EA is p = 1/2.

λ independent (1+1) EAs find a global optimum in O(n log n)
generations with probability 1− (1− p)λ = 1− 2−λ

(see [Friedrich, Oliveto, Sudholt, Witt’09] for a closely related result).
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Estimating Amplified Success Probabilities

How to simplify 1− (1− p)λ?

Union bound / Bernoulli’s inequality

1− (1− p)λ ≤ pλ

Lower bound

pλ

1 + pλ
≤ 1− (1− p)λ

Tight bounds [Badkobeh, Lehre, Sudholt 2015]

For 0 ≤ p ≤ 1 and λ ∈ N we have

pλ

1 + pλ
≤ 1− (1− p)λ ≤ min{1, pλ} ≤ 2pλ

1 + pλ
.
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A Royal Road Function for Island Models

[Lässig and Sudholt, GECCO 2010 & Soft Computing, 2013]

vs.

Dirk Sudholt Theory of Parallel Evolutionary Algorithms 16 / 65



Introduction Independent Runs Royal Road Parallel Times Combinatorial Optimisation Adaptive Schemes Outlook & Conclusions

Panmictic (µ+1) EA

select a parent uniformly at random

create offspring by mutation

select µ best individuals
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Island Model

uniform parent selection

mutation

send copies of best individual

select best immigrant

select best individuals

every τ generations

Special cases

τ =∞ −→ independent subpopulations
all islands run (1+1) EAs −→ parallel (1+1) EA

Dirk Sudholt Theory of Parallel Evolutionary Algorithms 18 / 65



Introduction Independent Runs Royal Road Parallel Times Combinatorial Optimisation Adaptive Schemes Outlook & Conclusions

LO(x) :=
∑n

i=1

∏i
j=1 xi 11110110 . . .

LZ(x) :=
∑n

i=1

∏i
j=1(1− xi ) 00011010 . . .

LO(x) + LZ(x) 11110110 . . .
00011010 . . .

LO(x) + min{LZ(x), z} 11111101 . . .
00000011 . . .

Definition

Let z , b, ` ∈ N such that b` ≤ n and z < `. Let x (i) := xi(`−1)+1 . . . xi`.

LOLZn,z,b,`(x) =
b∑

i=1

(i−1)`∏
j=1

xj ·
[
LO(x (i)) + min

(
z ,LZ(x (i))

)]
.

LOLZ 11111111 11111111 00000011 01011110 . . .
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Why Panmictic Populations Fail

Chance of extinction of prefix in every improvement of best fitness.

111111110 . . . 111111110 . . .
11111110 . . . 111111110 . . .
00000001 . . . 111111110 . . .
1111110 . . . constant prob. 111111110 . . .
0000001 . . . 111111110 . . .
11111110 . . . 111111110 . . .

Probability of extinction before completing block is 1− exp(−Ω(z)).

The probability that in all blocks 1s survive is 2−b.

Otherwise, many bits have to flip simultaneously to escape.

Theorem

If µ ≤ n/(log n) then with probability at least 1− exp(−Ω(z))− 2−b

the panmictic (µ+1) EA does not find a global optimum within nz/3

generations.
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Independent Subpopulations Fail

Amplified success prob.: 1− (1− p)λ ≤ pλ with p = exp(−Ω(z)) + 2−b.

Probability of failure is still at least 1− pλ:

Theorem

Consider λ ∈ N independent subpopulations of size µ ≤ n/(log n) each.
With probability at least 1− λ exp(−Ω(z))− λ2−b the EA does not find
a global optimum within nz/3 generations.
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Why the Island Model Succeeds

Key for success

communication

phases of independent evolution

z

migration

z

migration

z

migration . . .

At migration all 1-type islands are better than 0-type islands.
⇒ takeover can reactivate islands that got stuck.

Independent evolution creates diversity

11111001 00100101

00100101

00100101

00100101

00100101

00000101

00100101

10100111

01100101

01101111

11100100

00101010

11011101
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Why the Island Model Succeeds

For topologies with a good “expansion” (e. g. hypercube) the island
model maintains a sufficient number of islands on track to the optimum.

Theorem

For proper choices of τ, z , b, `, µ = nΘ(1) islands, and a proper topology
the parallel (1+1) EA finds an optimum in O(b`n) = O(n2) generations,
with overwhelming probability.
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Speedups

Classic notion of speedup from Alba’s taxonomy [Alba, 2002]

Strong speedup: parallel execution time vs. execution time of best
known sequential algorithm

Weak speedup: parallel execution time vs. its own sequential
execution time

Single machine/panmixia: parallel EA vs. panmictic version of it
Orthodox: parallel EA on λ machines vs. parallel EA on one machine

Notion of “speedup” in runtime analysis

Execution times depend on hardware – infeasible for theory

Using speedup with regard to the number of generations:
if T par

λ is the parallel runtime for λ islands,

speedup sλ =
E(T1)

E(Tλ)
.

Abstraction of weak orthodox speedup, ignoring overhead.
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Linear Speedups

Speedups

sublinear speedups: sλ < λ, total effort of parallel EA increases.

linear speedup: sλ = λ, total effort remains constant.

superlinear speedup: sλ > λ, total effort of parallel EA decreases.

Linear speedup means perfect use of parallel resources: the parallel time
decreases with λ, at no increase of the total effort.

“Asymptotic” definition of linear speedups [Lässig and Sudholt, 2010]:

sλ = Ω(λ)

the total effort does not increase by more than a constant factor.

Coming up: a simple method for estimating parallel times and speedups
in parallel EAs.

Assumption: all islands run elitist EAs.
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Fitness-level Method for Elitist EAs

EA is “on level i” if best point is in Ai .

A7

A6

A5

A4

A3

A2

A1

fi
tn

es
sPr(EA leaves Ai ) ≥ si

Expected optimization time of EA at most
m−1∑
i=1

1
si

.
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Bounds with Fitness Levels

OneMax (x) =
∑n

i=1 xi : sufficient to flip a single 0-bit.

si ≥ (n − i) · 1

n
·
(

1− 1

n

)n−1

≥ n − i

en

Theorem

(1+1) EA on OneMax : en
n−1∑
i=0

1

n − i
= en · Hn = O(n log n)

LO 11110010

si ≥
1

n
·
(

1− 1

n

)n−1

≥ 1

en

Theorem

(1+1) EA on LO :
n−1∑
i=0

en = en2
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Fitness-level Method for Parallel EAs

Ai

Ai−3

Ai−1

Ai−2

Ai−1

Ai

p

Ai Transmission probability p

Each edge independently
transmits a better fitness level
with probability at least p.

Transmission probability p can model. . .

probabilistic migration schemes

probabilistic selection of emigrants

probability of accepting immigrants

probability of a crossover between islands being non-disruptive

probability of not having a fault in the network
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Upper Bounds for Rings

Theorem

On a unidirectional or bidirectional ring with λ islands

E(T par) ≤ O

(
1

p1/2

m−1∑
i=1

1

s
1/2
i

)
+

1

λ

m−1∑
i=1

1

si
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Upper Bounds for Torus Graphs

Theorem

On a two-dimensional
√
λ×
√
λ grid or toroid

E(T par) ≤ O

(
1

p2/3

m−1∑
i=1

1

s
1/3
i

)
+

1

λ

m−1∑
i=1

1

si
.
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Upper Bounds for Hypercubes

000

100 010 001

110 101 011

111

Theorem

On the (log λ)-dimensional hypercube

E (T par) ≤ O

(
m +

∑m−1
i=1 log(1/si )

p

)
+

1

λ

m−1∑
i=1

1

si
.
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Upper Bounds for Complete Graphs/Offspring Populations

Theorem

On the λ-vertex complete graph Kλ (or the (1 + λ) EA, if p = 1)

E (T par) ≤ O(m/p) +
1

λ

m−1∑
i=1

1

si
.
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Big Hammer

Upper bounds on expected parallel time

Ring: O

(
1

p1/2

m−1∑
i=1

1

s
1/2
i

)
+ 1
λ

m−1∑
i=1

1
si

Grid: O

(
1

p2/3

m−1∑
i=1

1

s
1/3
i

)
+ 1
λ

m−1∑
i=1

1
si

Hypercube: O

m+
m−1∑
i=1

log(1/si )

p

 + 1
λ

m−1∑
i=1

1
si

Complete: O(m/p) + 1
λ

m−1∑
i=1

1
si
.

Remarks

“O” used for convenience, constant factors available and small

Refined bound for complete graph with small p (small probability of
migrating to any island) [Lässig and Sudholt, ECJ 2014].

Similar upper bounds hold for periodic migration with migration interval
τ = 1/p [Mambrini and Sudholt, 2015].

Dirk Sudholt Theory of Parallel Evolutionary Algorithms 34 / 65



Introduction Independent Runs Royal Road Parallel Times Combinatorial Optimisation Adaptive Schemes Outlook & Conclusions

Big Hammer Applied to Parallel (1+1) EA on LeadingOnes

Recall: si ≥ 1/(en) for all 0 ≤ i < n.

Upper bounds on expected parallel time

Ring: O

(
1

p1/2

n−1∑
i=0

e1/2n1/2

)
+ 1
λ

n−1∑
i=0

en = O
(

n3/2

p1/2 + n2

λ

)
Grid: O

(
1

p2/3

n−1∑
i=0

e1/3n1/3

)
+ 1
λ

n−1∑
i=0

en = O
(

n4/3

p2/3 + n2

λ

)
Hypercube: O

 n+
n−1∑
i=0

log(en)

p

 + 1
λ

n−1∑
i=0

en = O
(

n log n
p + n2

λ

)
Complete: O(m/p) + 1

λ

n−1∑
i=0

en = O
(

n
p + n2

λ

)
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So What?

Asymptotic linear speedup if 1
λ ·
∑m−1

i=1
1
si

dominates the red term
(and fitness-level method gives tight bounds).

Parallel (1+1) EA with p = 1 on LeadingOnes

parallel time linear speedup if best time bound

Ring: O
(
n3/2 + n2

λ

)
λ = O

(
n1/2

)
O
(
n3/2

)
Grid: O

(
n4/3 + n2

λ

)
λ = O

(
n2/3

)
O
(
n4/3

)
Hypercube: O

(
n log n + n2

λ

)
λ = O(n/ log n) O(n log n)

Complete: O
(
n + n2

λ

)
λ = O(n) O(n)

Upper bounds and realms for linear speedups improve with density.

Caution

Upper bounds and speedup conditions may not be tight.
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Conclusions for Fitness-Levels for Parallel EAs

Upper bounds on expected parallel time

Ring: O

(
1

p1/2

m−1∑
i=1

1

s
1/2
i

)
+ 1
λ

m−1∑
i=1

1
si

Grid: O

(
1

p2/3

m−1∑
i=1

1

s
1/3
i

)
+ 1
λ

m−1∑
i=1

1
si

Hypercube: O

m+
m−1∑
i=1

log(1/si )

p

 + 1
λ

m−1∑
i=1

1
si

Complete: O(m/p) + 1
λ

m−1∑
i=1

1
si
.

Applicable to island models running any elitist EA.

Transfer bounds for panmictic EAs to parallel EAs: plug in si ’s, simplify.

Can find range of λ that guarantees linear speedups.
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Migration via Rumour Spreading [Doerr, Fischbeck, Frahnow, Friedrich,

Kötzing, Schirneck, 2017]

Broadcasting Push protocol

Push protocol from randomised rumour spreading

Each island migrates to another island chosen uniformly at random.

Known to lead to fast dissemination of information.

Communication costs are low: 1 migration per island per generation.

Push protocol gives better combined costs (parallel time+communication
effort) than rings, d-torus and complete graphs on LO.

And binary trees perform well, too!
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Eulerian Cycles [Neumann 2008]

An illustrative example where diversity in island models helps.

Representation: edge sequence encodes walk.

v∗

Expected time for rotation: Θ(n4).

Expected time without rotation: Θ(n3).
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Speedups for Eulerian Cycles on G ′ [Lässig and Sudholt 2014]

Frequent migrations

τ = O(n2/(diam(T ) · λ)) implies
expected time Ω(n4/(log λ)).

Rare migrations

τ ≥ n3 implies expected time
O(n3 + 3−λ · n4).

Migration interval τ decides between logarithmic vs. exponential speedup!
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Eulerian Cycles: More Clever Designs

More efficient operators

Using tailored mutation operators [Doerr, Hebbinghaus, Neumann, ECJ’07]

removes the random-walk behaviour and the performance gap disappears.

More efficient representations

The best known representation, adjacency list matchings [Doerr,

Johannsen, GECCO 2007], can be parallelised efficiently for all instances
(fitness-level method applies).

Parallelisability depends on operators and representation!
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Island Models with Crossover

[Neumann, Oliveto, Rudolph, Sudholt, GECCO 2011]

Crossover requires good diversity between parents.

Solutions on different islands might have good diversity.

How efficient are island models when crossing immigrants with residents?
(Common practice in cellular EAs.)

Vertex Cover instance

Difficult for (µ+1) EAs [Oliveto, He, Yao, IEEE TEVC 2009].
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Island Models with Crossover

Vertex Cover instance

Single-receiver model [Watson and Jansen, GECCO 07]

Each globally optimal configuration is found on some island.

Receiver island uses crossover to assemble all of these.

Island model succeeds in polynomial time with high probability.
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Heterogeneous Islands for Set Cover

S = {s1, · · · , sm} a set containing m elements
C = {C1, · · · ,Cn} a collection of n subsets of S ; each set has a cost
Goal: minimum-cost selection of sets covering S :

⋃
i :xi=1 Ci = S .

SetCover is NP-hard, so aim for poly-time approximation.

Greedy algorithm with approximation ratio Hm

Starting from empty selection, always add the most cost-effective set.

Minimize f (x) = (u(x), cost(x)) [Friedrich et al., ECJ 2010]

u(x) is the number of uncovered elements

Global SEMO finds Hm-approximation in O(m2n) generations.

Heterogeneous island model [Mambrini, Sudholt, and Yao, 2012]

Island i specialises in finding the best solution with i covered elements.

All islands work together to create Hm-approximation

Low parallel times and low cost of communication
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Adaptive Schemes for Choice of λ

How to find a proper number of islands/offspring? [Lässig and Sudholt,

FOGA 2011]

Here: only consider Kµ.

Scheme A

double population size if no improvement

if improvement reset population size to 1

Scheme B

double population size if no improvement

if improvement halve population size

Offspring population size in (1+λ) EA [Jansen, De Jong, Wegener, 2005]

double population size if no improvement

if s ≥ 1 improvements then divide population size by s
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Schema A

Theorem

Given a fitness-level partition A1, . . . ,Am,

E(T seq
A ) ≤ 2

m−1∑
i=1

1

si
.

If each Ai contains a single fitness value, then also

E(T par
A ) ≤ 2

m−1∑
i=1

log

(
2

si

)
.

Population size reaches “critical mass” 1/si after doubling log(1/si )
times.
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Schema B

Theorem

Given a fitness-level partition A1, . . . ,Am,

E(T seq
B ) ≤ 3

m−1∑
i=1

1

si
.

If each Ai contains a single fitness value, then also

E(T par
B ) ≤ 4

m−1∑
i=1

log

(
2

sj

)
.

Stronger bound: if additionally s1 ≥ s2 ≥ · · · ≥ sm−1 then

E(T par
B ) ≤ 3m + log

(
1

sm−1

)
.

Scheme B is able to track good parameters over time.
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Example Applications

Parallel (1+1) EA/(1+λ) EA with Adaptive λ

E(T seq) E(T par) best fixed λ
OneMax A Θ(n log n) O(n) O

(
n

ln ln n

)
B Θ(n log n) O(n) O

(
n

ln ln n

)
LO A Θ(n2) Θ(n log n) O(n)

B Θ(n2) O(n) O(n)
unimodal f A O(dn) O(d log n) O(d)
with d f -values B O(dn) O(d) O(d)
Jumpk A O(nk) O(n) O(n)
2 ≤ k ≤ n/ log n B O(nk) O(n) O(n)

Scheme B performance matches best fixed choice of λ in almost all cases.
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Adaptive Migration Intervals [Mambrini and Sudholt, GECCO 2014]

Can we use the same idea to adapt the migration interval τ?

Goal: minimize communication without compromising exploitation
Idea: reduce migration if no improvement was found.

Scheme A: double τ if no improvement was found, otherwise set to 1.
Scheme B: double τ if no improvement was found, otherwise halve it.

All schemes have the same parallel runtime bound as fixed τ = 1.
Comparison of number of migrated solutions:

OneMax LeadingOnes Unimodal Jumpk

Complete — — — —

Ring log log n
√
n/ log n

√
n/ log n n

k
2
−1/(k log n)

Grid/Torus log log n 3
√
n/ log n 3

√
n/ log n n

k
3
−1/(k log n)

Hypercube log log log n log n/ log log n log n/ log log n log log nk−1

— same performance

f (·) Adaptive Scheme is better than best fixed τ by f (·)
f (·) Best fixed τ is better by f (·)
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Black-Box Complexity for Parallel EAs

Black-Box Complexity of function class Fn [Droste, Jansen, Wegener 2006]

Minimum number of queries to the black box needed by every
black-box algorithm to find optimum on hardest instance in Fn.

General limits on performance across all search heuristics.

Black-box complexity for λ parallel queries [Badkobeh, Lehre, Sudholt 2014]

Universal lower bounds considering the degree of parallelism λ.

“Every unary unbiased black-box algorithm needs Ω
(
n log n + λn

ln λ

)
function evaluations on every function with unique optimum.”
Applies to island models, offspring populations, multi-starts, etc.

Identify for which λ linear speedups are impossible.

Distributed black-box complexity [Badkobeh, Lehre, Sudholt 2015]

Universal lower bounds for distributed black-box algorithms
communicating via a given topology.

Investigate the impact of the topology.
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Recent and Future Work

Island Models for Dynamic Optimisation

Islands can help track a moving optimum [Lissovoi and Witt, 2015]

Sparse topologies can perform better than dense ones on oscillating
optima [Lissovoi and Witt, 2016]

Seeking synergies with Population Genetics

Can Wright’s Shifting Balance theory inspire the design of better
parallel GAs?

Can we apply our rigorous tools to advance population genetics?

Future work

Islands with large populations—how to select migrants?

Fixed-budget analyses for parallel EAs.

More work on multimodal problems.
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Conclusions

Insight into how parallel evolutionary algorithms work.

Examples where parallel EAs excel

Methods and ideas for the analysis of parallel EAs

How to transfer fitness-level bounds from panmictic to parallel EAs

How to determine good parameters

Inspiration for new EA designs

Speedup/parallelizability determined by

migration topology

fitness function

mutation operators

representation

migration interval τ

use of crossover

Rich, fruitful and exciting research area!
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Thank you!

Questions?
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